Low Dispersal of Human-Associated Microbes on to Pristine Snow during an Arctic Traverse on Sea Ice by the *Moon-1* Planetary Surface Rover

Dr. Andrew C. Schuerger¹ and Dr. Pascal Lee^{2,3,4}

¹Dept. of Plant Pathology, University of Florida Space Life Sciences Lab, Kennedy Space Center, FL

²Mars Institute, ³SETI Institute, ⁴NASA Ames Research Center, Moffett Field, CA

Haughton Mars Project (HMP) 1997-2015

= C-130 airlift

= Moon-1 rover

HMP Northwest Passage Drive Expedition (NWPDX) Kugluktuk to Cambridge Bay, April 2009

Moon-1 Rover: HMP Northwest Passage Drive Expedition(NWPDX)

Sampling Protocols

(Schuerger & Lee 2009)

Culturing Results on R2A

Interior Okarian rover samples.

Exterior snow samples.

Population Dynamics within the *Moon-1* Rover

Fungal Species Recovered from Interior of *Moon-1* Rover

Taxonomy¤ with·18S·contigs¤ in·current·study ¹ ¤	Strain No.a current study ² a	GenBanka accession No.a current studya	Source·location·for·a NCBI·closest·match·strain³a	NCBI'a closest matcha accession No.a	NCBIa closesta matcha	Numbera of isolatesa (sites)a
Alternaria-botrytis¤	A2F-4c-80	JX470350¤	aerosols, Swedeno	AF5481060	0.995¤	1(A)0
Alternaria cheiranthi¤	B2F-25c-30	JX456605¤	plant debris, CA, USA	AF229508a	0.9970	1(B)□
Aspergillus fumigatus¤	B1F-25c-20	JX456606¤	Chinao	FJ5607180	0.9910	1(B)o
Aspergillus oryzae¤	B1F-25c-2c0	JX4703340	Chinao	HM064501a	0.9850	1(B)o
Chaetomium globosum a	C2F-4c-10	JX4703350	Chinao	JN639019a	0.997□	1(C)a
Cladosporium cladosporio ides a	A2F-4c-10	JX4703360	South-Africa, Chinao	AY2510930	0.998a	1(A), 5(B)0
Cochliobolus-lunatus¤	B1F-25c-60	JX470339¤	Echinochloa pathogen, Chinao	DQ337381a	0.9960	1(B)□
Geomyces-destructans:	A2F-4c-90	JX4703400	bat pathogen, France	GQ4890250	0.999a	3(A),·1(C)o
Geomyces:pannorum	A2F-4c-10¤	JX4703410	soil, Antarctica¤	AY129548a	0.9980	1(A)□
Neophaeosphaeria filamentosa	C2F-25c-20	JX470342¤	USA□	AF2508250	0.9990	2(C)a
Penicillium expansum :	B2F-4c-40	JX470343¤	human food, Chinao	GU5619880	0.9990	2(B)a
Penicillium freii¤	A2F-25c-1¤	JX4703440	Denmark©	AJ005446a	0.9990	2(A),·3(B)o
Phomamacrostoma¤	A2F-25c-3¤	JX4703460	plant leaf, Japano	AB454217a	0.9950	1(A)a
Pleospora-herbarum	B1F-25c-6ba	JX470347¤	Oregono	DQ767648a	0.993¤	2·(B)o
Tetracladiummaxilliforme:	A2F-4c-50	JX470348¤	lake water, Canadao	EU883429a	0.9920	1(A)□
Thelebolus microsporus ¤	A2F-4c-110	JX470349p	soil, Antarcticao	AY9421910	0.9980	1(A)0

16 unique fungal taxa isolated from within the Moon-1 samples.

Bacterial Species Recovered from Interior of *Moon-1* Rover

Taxonomya with·16S·contigsa in·current·study ¹ a	Strain No.a current study ² a	GenBanka accession No.a current studya	Source locations for a NCBI strains a closest match ³ a	NCBIa accession No.a closest matcha	NCBIa closesta matcha	Numbera of isolatesa (Sites)a
Aeromicrobium tamlense¤	C1-37c-20	JX517204¤	dried-seaweed, South Koreao	DQ411541a	0.9830	1(C)0
Arthrobacter agilis¤	A2-4c-50	JX5172050	ground water, South Korea	EU7309430	0.9870	1(A)0
Arthrobacter flavus :	A2-4c-140	JX5172060	pondwater, Antarcticao	FR6913900	0.9910	1(A)·□
Arthrobactersp.0	A2-25c-50	JX5172070	ice/snow, Antarctica; permafrost, Norway□	DQ3414150	0.9860	2(A),·1(B)o
Arthrobacter sulfonivorans a	A2-4c-150	JX5172080	glacial-sediments, Svalbardo	FM955888a	0.9950	3(A)¤
Bacillus-licheniformis (B1512R)	A1-25c-50	JX5172180	fermented fish, China, India, & South Korea	JX0251650	0.999¤	2(A),·3(B)°
Bacillus megaterium¤	A1-25c-210	JX5172190	JPL-cleanroom, CA, USA; rhizosphere, China; desert granite, AZ. USA:	AY0303380	0.999a	2(A),·2(B)o
Bacillus nealsonii:	A2-37c-150	JX5172200	plant debris, Chinao	FJ5443930	0.9990	1(A),·1(B)o
Bacillusniacini (B1512R)0	A2-37c-23a	JX5172210	soil, India	GU3392920	0.9910	1(A)0
Bacillus pumilus ::	A1-25c-19a	JX5172230	potassium mine, China; JPL &	GU3326000	0.9990	2(A),·2(B),·
Bacillus simplex a	A1-25c-120	JX5172250	plant leaves, roots, alpine grass, China; desert granite, AZ, USA; Arctic Oceano	FJ9999400	0.999a	4(A),·2·(B)□
Bacillus sp.□	A2-37c-20a	JX5172260	JPL-cleanroom, CA, USA; ocean- water, Japan; desert granite, AZ, USA; uranium mine, Germanyo	AY030333¤	0.9980	4(A),·4(B),· 3(C)o
Bacillus thuring iensis :	A1-25c-140	JX5172270	Jatropha endophyte, Singapore≎	JQ659733a	1.0000	3(A)0
Bacillusweihenstephanensis¤	A2-25c-6b0	JX5172280	forest soil, France	CP0009030	1.000≎	1(A0
Breivbacillus-brevis¤	B1-37c-14a	JX5172290	plant compost, Spaino	EF079071a	0.9980	1(B)□
Brevibacillus-borstelensis:	A1-37c-130	JX5172300	fermented soybean sauce, South- Koreao	FJ9826630	0.9990	2(A)0

42 additional bacterial taxa including *Kocuria*, *Microbacterium*, *Paenibacillus*, *Planococcus*, *Sporosarcina*, and *Staphylococcus* spp.

1 Fungus & 1 Bacterium Recovered from Snow Samples

Taxonomya 16S·or·18S·with·contigsa in·current·study ¹ a	Strain·No.¤ current·study·²¤ ¤	GenBanka accession:No.a current:studya	Source location for m NCBI closest match strainm	NCBI closestra matcha accession No.a	NCBI¤ closestra match¤	Numbera of a isolatesa
Aspergillus fumigatus 🌣	B6F-25C-10	JX517279a	Plant-debris, China¤	FJ560718a	0.991□	1(B)¤
Brevibacillus agri¤	A4-25C-2¤	JX517278¤	brick-wall,-China	GQ927168¤	0.998¤	1(A)□

17 Biocidal or Inhibitory Factors on the Surface of Mars

- (1) solar UV irradiation
- (2) extreme desiccating conditions
- (3) low pressure
- (4) anoxic CO₂-enriched atmosphere
- (5) low temperature
- (6) high salts levels [e.g., MgCl₂, NaCl, FeSO₄, and MgSO₄] in surficial soils
- (7) lack of defined energy source free of UV irradiation
- (8) no sources of available nitrogen and carbon
- (9) no obvious redox couples for microbial metabolism
- (10) galactic cosmic rays
- (11) solar particle events
- (12) UV-glow discharge from blowing dust
- (13) solar UV-induced volatile oxidants [e.g., O₂-, O-, H₂O₂, O₃]
- (14) globally distributed oxidizing soils
- (15) high concentrations of heavy metals in martian soils
- (16) acidic or alkaline conditions in martian soils
- (17) perchlorates in some soils

Implications for Human Exploration of Mars

- 1. Very low microbial dispersal from the *Moon-1* rover on to pristine snow during the NWPDX traverse.
- 2. Dispersal away from human habitats and rovers on Mars may be low to extremely low during exploration.
- 3. Although the Arctic is a harsh terrestrial environment, at least 17 biocidal or inhibitory factors are likely active on the surface of Mars.

Implications for Human Exploration of Mars

4. Dust covered or buried surfaces are likely to protect embedded terrestrial microorganisms, and niches in buried sites must be characterized.

Drawing by Carter Emmart